December 14-15, 2017

MedTech Impact 2017

Venetian/Palazzo Resort

Las Vegas, NV

(561) 893-8633

info@medtechimpact.com

Tag Archives: Medical Innovation

The Cost of Chronic Disease

The primary issue that consumes the majority of the burden of healthcare costs in the United States is preventable chronic disease: while the most prevalent health conditions are simultaneously the most avoidable, they continue to cost the country’s budget billions of dollars. While overall numbers have decreased since 2010, when chronic disease cost the U.S. a total of $315 billion, morbid obesity rates have continued to rapidly spike—a condition that leads to a range of critical health issues including heart disease, diabetes, and stroke.

Primary care providers have long faced the struggle of determining how to implement best practice care for patients diagnosed with chronic diseases. Recent studies indicate that almost half of the entire U.S. population has at least one chronic health condition—including heart disease, cancer, diabetes, obesity, or arthritis. Statistics designate these health care treatments costs to account for 86% of cumulative national healthcare spending, and the CDC reports that chronic conditions are the leading causes of death and disability in the country.

Yet the past decade has seen the advent and proliferation of digital health technology, spurring the generation of new techniques and strategies for healthcare professionals to utilize in chronic disease management. These types of technology vary in terms of accessibility and usability, but include remote monitoring, mobile health apps installable on phones, and wireless wearables—which serve as activity trackers.

A series of interviews conducted by Medical News Today demonstrate a bright future for the potential of new technology, and its ability to spur and provide high-quality care. Suzanne Falck, MD, an associate professor of internal medicine at the University of Illinois College of Medicine, noted that a highly successful digital tool is currently in use for the management of heart failure: an implanted sensor immediately transmits data to a healthcare practitioner, who then analyzes the data in order to make medical recommendations. Further clinical trials and studies indicate that remote monitoring is more cost-effective than traditional, conventional management.

Moreover, the burgeoning popularity of medical apps signifies that mobile technology can make a hugely positive impact on chronic disease management. There are currently approximately 259,000 medical health apps available to purchase; over half are aimed at targeting consumers with chronic conditions. Clinical trials have repeatedly shown that patients with type 2 diabetes who utilized an app to monitor their blood glucose levels showed greater benefits than those who did not. A recent article in Diabetes Technology& Therapeutics states that the prognosis in patients with diabetes is ‘strongly influenced by the degree of control of their disease,’ which reinforces the effectiveness of self-management support through mobile apps.

Another innovative and exciting development is wearable technology and devices, which are currently being studied in a variety of clinical research settings. Many healthcare providers believe that the ‘potential of this technology is endless,’ as they can improve access to care while simultaneously enhancing convenience—and likely patient compliance.

Most importantly, being conscious of medicinal needs and treatments requires a consistently high level of responsibility and awareness. Healthcare experts urge patients to take active, informed roles in managing their health: online workshops have been developed to offer chronic disease self-management programs, which have been proven to significantly improve health statuses. Moreover, healthcare practitioners and professionals must collectively work together and utilize the new landscape of digital medical technology to their patients’ benefits.

A Miracle Medical Chip: Devices that Heal

Researchers at Ohio State University have taken the first step in creating a medical chip that could ultimately heal almost any injury or disease.

The development of a small, dime-sized silicone device—known as Tissue Nanotransfection (TNT)—uses nanotechnology to actively reprogram a person’s cellular makeup. By simply placing the chip on a wound, the device sends an electrical pulse designed to convert living cells into whatever necessary cells the body requires. The pulse “opens a small window into the cell,” allowing the chip to transmit an entirely new genetic code. Moreover, the entire process takes less than one second.

The findings, published last week in the journal Nature, discuss lab tests during which mice with injured legs were completely repaired with a single touch of TNT: by turning skin cells into vascular cells, within the timespan of three weeks. This breakthrough technology does not only work on skin cells, but can also restore any type of tissue. The device was also able to restore brain function in a mouse who had suffered a stroke, by growing brain cells on its skin.

The future potential and implications of such a device are clearly limitless, but some of the researchers’ ideas include reprogramming the brain cells of people diagnosed with Alzheimer’s or stroke patients, regenerating injured limbs, or helping victims of car crashes or combat at the scene of the accident.

Director of the Center for Regenerative Medicine and Cell-Based Therapies, Chandan Sen, says, “This technology does not require a laboratory or hospital, and can actually be excited in the field. It’s less than 100 grams to carry and will have a long shelf life.” Additionally, while current cell methods of cell therapy carry high risks—like introducing a virus—TNT treatment has no known side effects, and requires almost no time to carry out.

While the technology is currently waiting for approval from the FDA, Sen states that the device is expected to enter human trials within the next year, and he is currently in communications with Walter Reed National Medical Center. “We are proposing the use of skin as an agricultural land where you can essentially grow any cell of interest,” says Sen.

FDA Encourages Development of Medical Technology

The Food and Drug Administration has recently announced a program that actively encourages the development of medical digital technology, including wireless wearables and applications that can monitor blood pressure and heart rate, track intake of calories, and measure physical activity.

The program is designed to give pre-clearance to developers working on digital health products, as the approval process for apps sometimes includes burdensome regulations, which can increase costs and limit innovation: the FDA hopes to reduce development costs and give entrepreneurs increased opportunities to develop products.

Read More